Improving Intrusion Detection Accuracy in Campus Networks: A Dataset Driven by Real-Time Traffic and Honeypot Simulations

¹Daud M. Sindika^{*}, ²Mrindoko R. Nicholaus and ³Nabahani B. Hamadi ¹Directorate of Information and communication Technology ²Department of Computer Science and Engineering ³Department of Information System Technology ^{1.2.3}Mbeya University of Science and Technology, P.O Box 131 Mbeya, Tanzania

DOI: https://doi.org/10.62277/mjrd2025v6i20011

ARTICLE INFORMATION

Article History

Received: 20th January 2025 Revised: 10th May 2025 Accepted: 12th June 2025 Published: 30th June 2025

Keywords

Intrusion Detection System Dataset Network Traffic Honeypot Campus Network This article describes the creation of a domain-specific Intrusion Detection System (IDS) dataset customised for campus networks to overcome the constraints of out-of-date public datasets such as KDD'99 and NSL-KDD. The dataset depicts the various user behaviours, traffic patterns, and device interactions that are unique to educational contexts because it captures network traffic straight from a university. Real-time logs from firewalls, routers, and switches are used as data sources, as is the simulated attack traffic collected by honeypots, which are false open network ports meant to entice malicious behaviour. This technique ensures a balanced mix of normal and attacking actions. Machine learning models trained on this dataset have a 99% detection rate, exceeding models trained on public datasets (95%), while also lowering false positives. The dataset is continually updated to reflect changes in user behaviour, software, and threats, maintaining its long-term usefulness. This work establishes a realistic, adaptive, and effective framework for developing scalable IDS models designed for campus network protection.

*Corresponding author's e-mail address: dsindika@yahoo.com (Sindika, D.M)

ABSTRACT

1.0 Introduction

Network-based attacks are becoming more common, necessitating the development of accurate detection and mitigation techniques. Intrusion Detection Systems (IDS) are crucial in detecting and responding to such threats, transcending standard defences such as firewalls, passwords, and antivirus software by monitoring network activity in real time (Aljanabi *et al.*, 2021; Al-Qatf *et al.*, 2018). IDSs safeguard the confidentiality, integrity, and availability of digital assets and are especially crucial in dynamic situations such as educational and cloud-based networks.

As attacks become more advanced, machine learning (ML) has become a key approach in developing IDS because it can identify complicated, evolving threats, lower false alarms, and adapt its responses. However, the success of machine learning-based intrusion detection systems is strongly dependent on the availability of highquality, relevant datasets for model training.

Publicly available datasets, like KDD'99 and NSL-KDD, are frequently utilised, but they are typically out of date and lack the diversity and specificity required for modern detection tasks (Khraisat *et al.*, 2019; Ghurab *et al.*, 2021; Komisarek *et al.*, 2021). These statistics usually lack real-time traffic characteristics, have inadequate tagging, and do not reflect current attack vectors. As a result, ML models trained on them may perform poorly in real-world settings. Tailored datasets are critical for improving detection accuracy in specific network scenarios (Devi & Kannan, 2021).

This study tackles this problem by creating a domain-specific IDS dataset using traffic collected at a Tanzanian university campus. The dataset includes real-time logs from firewalls, routers, and switches, as well as honeypot-generated traffic that replicates attack behaviour. This technique captures different user behaviours, device interactions, and localised dangers that differ dramatically from commercial or enterprise contexts.

Despite the availability of general-purpose datasets, there is currently no domain-specific dataset that addresses traffic characteristics of campus networks in underdeveloped countries such as Tanzania. This study bridges that gap, providing a foundation for developing more accurate, adaptive IDS models customised to educational institutions' specific security requirements.

2.0 Materials and Methods

2.1 Study Area Description

This research was done at Mbeya University of Science and Technology (MUST) in Tanzania's Mbeya Region. MUST was chosen because of its unique network features, which differ from those found in corporate or commercial situations.

These include various user behaviours, device kinds, and communication protocols, all of which result in unique traffic patterns. Key features like a large and changing group of users, VLAN-based segmentation, guest access for visitors, and access to important information like student records and research data all lead to realistic and varied network activity.

These characteristics make MUST a suitable platform for creating a domain-specific IDS dataset.

2.2 Study Design and Data Collection

The network traffic collected over six days within the MUST computer network was analysed using an experimental research design in this study.

Data gathering is the initial stage in creating an IDS dataset. Using sensors and monitoring technologies, higher learning institutions (HLIs) collect network logs, packet captures, and other pertinent data. Examples of logs include firewall logs, honeypot logs, network flow statistics, DNS logs, and authentication logs. These sources provide a comprehensive picture of both legitimate and harmful network activities.

Data is typically acquired using packet- or flowbased approaches. Packet-level collection means setting up network devices with mirrored ports to capture all the data being sent, while flow-based approaches gather information about the connections instead (Ring et al., 2019). This investigation's flow-based dataset was collected over six days on a campus network and consisted solely of DNS connections.

There were 610,600 unidirectional flows observed. Out of these, 94,248 were found to be harmful by comparing them with firewall logs, IDS alerts, and honeypot activity, which network security experts carefully reviewed to ensure they were correct using a method that combines information from different sources, often used in research on detecting intrusions. The remaining flows were deemed normal user activity.

Because of the sensitivity of the data and the availability of personal and institutional information, the dataset known as MD23 is not publicly available. However, ethical concerns were resolved by ensuring data anonymity (for example, masking IP addresses) and collecting only metadata when possible. Furthermore, the study adhered to institutional ethical requirements and received permission from the university's research ethics council prior to data collection.

Figure 1 depicts the stages of the process, beginning with network activity and progressing to firewall and honeypot logging, flow extraction, and feature development. This visual representation shows how raw data was turned into a structured dataset for IDS model training.

Figure 1

Our generated dataset was named MD23. Four categories are used to categorise attacks in this dataset:

- a) DoS: A denial of service (DoS) attack stops authorised users from using network and system resources. Online banking and email might be affected (Yu & Bian, 2020). DoS assaults include the SYN flood assault, Smurf attack, teardrop, land, Neptune, and mailbomb (Mishra et al., 2019).
- b) Remote to Local (R2L): R2L attacks entail an attacker trying to access the target workstation without authorisation (Yu & Bian, 2020). Examples of R2L attacks are named sendmail, worm, xnoop, ftp_write, imap, multihop, phf, spy, warezclient, xclock, snmpgetattack, snmpguess, and snmpguess (Mishra et al., 2019).
- c) User to Root (U2R): This assault aims to give the perpetrator local access privileges on the victim's machine (Yu & Bian, 2020). Examples of U2R attacks are buffer_overflow, loadmodule, perl, rootkit, httptunnel, ps, xterm, and sqlback (Mishra et al., 2019).
- d) Probe: In Probe, the attacker focuses on the host and seeks to learn more about it (Yu & Bian, 2020). Ipsweep, Resetscan, ACK scan, UDP scan, and FIN scan are examples of probe attacks (Mishra et al., 2019).

During data collection, the institution firewall called Sophos XG 330, which is running on the computer network of the university, was used to capture the network traffic and system logs through the observation method, as shown in Tab. 1.

The Honeypot system software was employed in the study to record the attack patterns and behaviours of the attacker in finding ways to penetrate the systems.

Table 1

Collected Data before Preprocessing

Log subtype	Firewall rule	NAT rule	Firewall rule name	NAT rule name	Rule type Log occurrence	E Live PCAP Src IP	Src port	Dst IP	Dst port In interfa	ice Out interf	ace protocol	Bytes sent Byt	es received Conne	ction duration Status
Denied	N/A		0		0	1 Open PCAP 172.16.0.216	62211	139.177.237.224	443		TCP	0	0	0 Malicious
Allowed	1	1	1 LAN_Allow-internet	fw#1_migrated_NAT_Rule	1 1	1 Open PCAP 172.16.17.100	58742	157.240.195.63	443 Port1	Port5	TCP	1002	4730	92 Normal
Allowed	1	1	1 LAN_Allow-internet	fw#1_migrated_NAT_Rule	1 1	1 Open PCAP 172.16.16.130	41368	3 173.222.106.185	443 Port1	Port5	TCP	80813	26685	615 Normal
Allowed	4		8 Allow DNS	fw#4_migrated_NAT_Rule	1 1	1 Open PCAP 172.16.0.26	23452	41.59.226.59	53 Port1	Port5	UDP	66	367	30 Normal
Denied	N/A		0		0	1 Open PCAP 172.16.0.216	62211	139.177.237.224	443		TCP	0	0	0 Malicious
Denied	N/A		0		0	1 Open PCAP 172.16.16.140	56482	2 102.132.120.164	443 Port1		TCP	0	0	0 Malicious
Denied	N/A		0		0	1 Open PCAP 172.16.16.140	56482	102.132.120.164	443 Port1		TCP	0	0	0 Malicious
Allowed	1	1	1 LAN_Allow-internet	fw#1_migrated_NAT_Rule	1 1	1 Open PCAP 172.16.17.114	55545	5 172.217.170.170	443 Port1	Port5	TCP	989	5932	20 Normal
Allowed	4		8 Allow DNS	fw#4_migrated_NAT_Rule	1 1	1 Open PCAP 172.16.0.202	54507	41.59.226.59	53 Port1	Port5	UDP	84	274	31 Normal
Allowed	5	1	2 DMZ_TO_WAN	fw#5_migrated_NAT_Rule	1 1	1 Open PCAP 172.16.7.14	41186	5 196.13.105.13	443 Port3	Port5	TCP	1877	6659	10 Normal
Allowed	1	1	1 LAN_Allow-internet	fw#1_migrated_NAT_Rule	1 1	1 Open PCAP 172.16.17.126	61154	157.240.196.35	443 Port1	Port5	TCP	2634	4444	236 Normal
Allowed	1	1	1 LAN_Allow-internet	fw#1_migrated_NAT_Rule	1 1	1 Open PCAP 172.16.0.26	39285	5 35.190.0.66	443 Port1	Port5	UDP	4283	6789	62 Normal
Allowed	1	1	1 LAN_Allow-internet	fw#1_migrated_NAT_Rule	1 1	1 Open PCAP 172.16.0.86	45132	157.240.196.15	443 Port1	Port5	TCP	1017	6951	48 Normal
Allowed	1	1	1 LAN_Allow-internet	fw#1_migrated_NAT_Rule	1 1	1 Open PCAP 172.16.17.100	58720	157.240.195.63	443 Port1	Port5	TCP	1136	1697	94 Normal
Allowed	4		8 Allow DNS	fw#4 migrated NAT_Rule	1 1	1 Open PCAP 172.16.17.110	25575	5 41.59.226.59	53 Port1	Port5	UDP	73	376	30 Normal
Allowed	1	1	1 LAN_Allow-internet	fw#1_migrated_NAT_Rule	1 1	1 Open PCAP 172.16.17.193	48176	5 216.58.223.106	443 Port1	Port5	TCP	2159	6868	43 Normal
Allowed	1	1	1 LAN_Allow-internet	fw#1_migrated_NAT_Rule	1 1	1 Open PCAP 172.16.16.124	55337	7 104.26.12.49	443 Port1	Port5	TCP	2078	1265	10 Normal
Allowed	4		8 Allow DNS	fw#4_migrated_NAT_Rule	1 1	1 Open PCAP 172.16.17.110	2577	41.59.226.59	53 Port1	Port5	UDP	61	349	30 Normal
Allowed	4		8 Allow DNS	fw#4_migrated_NAT_Rule	1 1	1 Open PCAP 172.16.17.110	1230	41.59.226.59	53 Port1	Port5	UDP	61	349	30 Normal
Allowed	1	1	1 LAN_Allow-internet	fw#1_migrated_NAT_Rule	1 1	1 Open PCAP 172.16.0.86	45130	157.240.196.15	443 Port1	Port5	TCP	4898	16830	48 Normal
Allowed	4		8 Allow DNS	fw#4_migrated_NAT_Rule	1 1	1 Open PCAP 172.16.17.114	58703	41.59.226.59	53 Port1	Port5	UDP	77	380	30 Normal
Denied	N/A		0		0	1 Open PCAP 172.16.17.146	41886	5 104.21.233.217	443		TCP	0	0	0 Malicious
Allowed	1	1	1 LAN_Allow-internet	fw#1_migrated_NAT_Rule	1 1	1 Open PCAP 172.16.17.135	3639	9 171.96.220.168	13954 Port1	Port5	TCP	52	40	0 Normal
Allowed	1	1	1 LAN_Allow-internet	fw#1_migrated_NAT_Rule	1 1	1 Open PCAP 172.16.17.155	59153	3 102.132.120.162	443 Port1	Port5	TCP	1870	3450	13 Normal
Allowed	4		8 Allow DNS	fw#4_migrated_NAT_Rule	1 1	1 Open PCAP 172.16.7.14	51763	41.59.226.59	53 Port3	Port5	UDP	80	140	30 Normal
Allowed	4		8 Allow DNS	fw#4_migrated_NAT_Rule	1 1	1 Open PCAP 172.16.17.108	57123	8.8.8.8	53 Port1	Port5	UDP	69	109	31 Normal
Allowed	1	1	1 LAN_Allow-internet	fw#1_migrated_NAT_Rule	1 1	1 Open PCAP 172.16.17.115	60192	35.240.191.84	2048 Port1	Port5	TCP	60	300	77 Normal
Allowed	4		8 Allow DNS	fw#4_migrated_NAT_Rule	1 1	1 Open PCAP 172.16.17.110	9635	5 41.59.226.59	53 Port1	Port5	UDP	61	349	30 Normal
Denied	N/A		0		0	1 Open PCAP 102.132.120.16	4 443	41.59.86.254	34132		TCP	0	0	0 Malicious
Denied	N/A		0		0 1	1 Open PCAP 172.16.16.140	56482	102.132.120.164	443 Port1		TCP	0	0	0 Malicious
Allowed	1	1	1 LAN_Allow-internet	fw#1_migrated_NAT_Rule	1 1	1 Open PCAP 172.16.17.111	34132	2 102.132.120.164	443 Port1	Port5	TCP	1479	22900	27 Normal
Allowed	1	1	1 LAN_Allow-internet	fw#1_migrated_NAT_Rule	1 1	1 Open PCAP 172.16.17.120	51560	20.199.120.85	443 Port1	Port5	TCP	52	52	60 Normal
Allowed	1	1	1 LAN_Allow-internet	fw#1_migrated_NAT_Rule	1 1	1 Open PCAP 172.16.17.100	58746	5 157.240.195.63	443 Port1	Port5	TCP	1234	5078	92 Normal
Allowed	4		8 Allow DNS	fw#4_migrated_NAT_Rule	1 1	1 Open PCAP 172.16.17.108	63226	5 41.59.226.59	53 Port1	Port5	UDP	65	465	31 Normal
Allowed	5	1	2 DMZ_TO_WAN	fw#5_migrated_NAT_Rule	1 1	1 Open PCAP 172.16.7.14	41174	196.13.105.13	443 Port3	Port5	TCP	2437	6011	11 Normal
Denied	N/A		0		0	1 Open PCAP 172.16.17.187	49608	3 157.240.196.61	443		TCP	0	0	0 Malicious

The statistics of the data gathered for a week to build the dataset are displayed in Table 2.

Table 2

Collected Data

Date	Number of Flows	Number of Attacks	Description
15/05/2023	155,495	26,790	Normal, DoS, and Probe
16/05/2023	145,201	22,452	Normal, Dos, and probe
17/05/2023	29,101	22,747	Normal, U2R, and R2L
18/05/2023	63,901	20,998	Normal, U2R, and R2L
19/05/2023	98,801	51,454	Normal, Dos, Probe, U2R, and R2L
03/06/2023	118,101	41,801	Normal, Dos, Probe, U2R, and R2L
Total	610,600	186242	Normal, Dos, Probe, U2R, and R2L

2.3 Data Analysis

Python (Python Software Foundation, Wilmington, DE, USA) was used to clean the data, create visualisations, apply feature selection methods, and build the machine learning models in the Anaconda environment (Anaconda Software Distribution, Austin, TX, USA). Many Python packages were used. Pandas was used to clean and organise the data; Matplotlib was used to create the visualisations; Seaborn was used to create a heat map showing the correlation between features; Sci-Kit Learn was used for all machine learning and feature selection operations, and Numpy was used for general mathematical operations.

2.3.1 Data Preprocessing

After being collected, the data was preprocessed to verify its quality and uniformity. Data preprocessing is a crucial step in preparing the data for IDS training. It involves cleaning and transforming the data into an appropriate format. Given that the information was obtained in a controlled environment, special care was taken to capture essential identity indications from network traffic. Payload size, protocol flags (such as SYN, ACK, and FIN), source and destination IP addresses and ports, and packet size distribution were all recovered during preprocessing. These characteristics crucial detecting are in communication habits and anomalies. Abnormal payload sizes or TCP flag combinations, for example, are frequently indicative of scanning or attack attempts. All characteristics were cleaned, anonymised to preserve sensitive data, and standardised to maintain consistency in future machine learning activities.

Typical preprocessing procedures of this dataset included:

- i. Dealing with missing values, choosing a method for handling missing data, such as imputation or removing rows or columns with empty values.
- ii. Categorical variables were required to be converted into numerical representations using methods like one-hot encoding or label encoding for data that contains any of these variables.
- iii. Scaling/normalisation: Another procedure was to scale or normalise the numerical features to make sure they are on a similar scale, depending on the specific methods or models you intend to apply.
- iv. Define the target variable (e.g., malicious or benign label): Establish the IDS's target variable. This might be a categorisation that is either true or false.
- v. Data Split: Split the data into training and testing sets using a 70/30 split to evaluate the performance of your IDS.

Table 3 presents the dataset's statistics following data preprocessing to develop a model.

Table 3

A ()	D (~	_	
Atter	1 Jata	Pro-P	rnce	ccino
$\pi n c c$	Data	IIC I	IULL	JJIIIG

		0				
Number	Number	Description				
of Flows	of					
	Attacks					
559,735	92,000	Dos	23,250			
		Probe	27,250			
		U2R	21,250			
		R2L	20,250			
		Normal	407,168			
		Abnorma	60,567			
		I/Unclass				
		ified				

2.3.2 Feature Selection

Feature selection is critical in improving the performance of machine learning models for intrusion detection by removing irrelevant or duplicate features. In this study, a decision treebased classifier and Recursive Feature Elimination (RFE) were used on the IDS dataset to determine the most important features that improve detection accuracy while reducing computing cost. To improve feature relevance, the select the top K highest-scoring features from the dataset (SelectKBest) technique from the Scikit-Learn module were selected. SelectKBest assesses features using univariate statistical tests and chooses the top-k features with the highest scores. Initially, the dataset had 35 features, but after feature selection, 15 top-ranked features were maintained for model training.

These chosen features include source/destination IP addresses, ports, protocols, packet sizes, and timestamps. This reduction not only enhanced detection performance but also reduced model overfitting and shortened training time.

Table 4

-		-			-
Losturo	Imnortanco	Scores	tor So	lortod	Lasturac
i caluic i	Inportance	JUDIES		IELLEU	ι εαιμιες

No.	Feature Name	Description	Туре	Importance Score
1	Time	Time of the connection	Continuous	0.72
2	Log comp	1 if valid component; 0 otherwise	Discrete	0.45
3	Log subtype	1 if successfully logged in; 0 otherwise	Discrete	0.48
4	Firewall rule	Which firewall rule allowed the connection	Continuous	0.53
5	NAT rule	Which NAT rule allowed the connection	Continuous	0.40
6	Firewall rule name	1 if LAN_Allow-internet; 0 otherwise	Discrete	0.55
7	NAT rule name	1 if fw#1_migrated_NAT_Rule; 0 otherwise	Discrete	0.42
8	Rule type	1 if rule type 1; 0 otherwise	Discrete	0.39
9	Log occurrence	Number of log entries	Continuous	0.50
10	Live PCAP	Live packet capture presence	Continuous	0.57
11	Src IP	Source IP address	Continuous	0.62
12	Src port	Source port	Continuous	0.68
13	Dst IP	Destination IP address	Continuous	0.63
14	Dst port	Destination port	Continuous	0.70
15	In interface	Incoming interface	Continuous	0.48
16	Out interface	Outgoing interface	Continuous	0.46
17	Protocol	Protocol type (TCP, UDP, etc.)	Discrete	0.77
18	Bytes sent	Bytes sent from source to destination	Continuous	0.85
19	Bytes received	Bytes received from the destination to the source	Continuous	0.83
20	Connection duration	Duration of the connection (in seconds)	Continuous	0.80
21	Status	Connection status (normal or error)	Discrete	0.58

This technique aligns with the findings of Nkiama et al. (2016), who discovered that precise feature selection significantly enhances IDS accuracy. Furthermore, investigations by Desyani et al. (2020), Upadhyay et al. (2021), and Otchere et al. (2022) demonstrate the efficiency of SelectKBest in reducing dimensionality while maintaining model performance.

2.3.3 Labeling

Each network activity must be tagged as normal or malicious to construct a supervised learning dataset. Data labels can be appropriately labelled by network administrators, cybersecurity specialists, and threat intelligence. The labelled data was used to train the model. Based on our data set, we labelled normal as 1 and malicious as 2, 3, 4, 5, and 6 for Probe, R2L, U2R, DoS, and Abnormal/Unclassified, respectively.

Table 5 After Preprocessing

Time	Log_comp	Log_comp Lo	g_subtyLo	g_subty Firew	all_r NAT_ru	e Firewall_	Firewall_r	NAT_rule	NAT_rule_I	NAT_rule	Rule_type Lo	g_occur li	ve_PCAPSrcIP	5	Srcport	DstIP	Dstport
45062	0	1	0	1	-1	0 -1	-1	-1	-1	-1	0	1	1	-1	443	1	36144
45081	1	0	1	0	1 :	1 1	L 0	1	0	0	1	1	1	1	55213	1	443
45062	1	0	1	0	4	8 1	1 1	0	1	0	1	1	1	1	45891	1	53
45064	0	1	0	1	-1	0 -1	-1	-1	-1	-1	0	1	1	1	42230	-1	443
45066	i 1	0	1	0	4	8 1	l 1	0	1	0	1	1	1	1	57741	1	53
45081	0	1	0	1	-1	0 -1	-1	-1	-1	-1	0	1	1	1	64406	-1	443
45062	1	0	1	0	1 :	1 1	ι ο	1	0	0	1	1	1	1	51922	-1	80
45063	1	0	1	0	4	8 1	l 1	0	1	0	1	1	1	1	42540	1	53
45064	1	0	1	0	4	8 1	l 1	0	1	0	1	1	1	1	49380	1	53
45062	1	0	1	0	1 :	1 1	L 0	1	0	0	1	1	1	1	49501	-1	443
45063	0	1	0	1	-1	0 -1	l -1	-1	-1	-1	0	1	1	1	443	1	63148
45064	1	0	1	0	4	8 1	l 1	0	1	0	1	1	1	1	48547	1	53
45080	1	0	1	0	0	4 1	l 1	8	8	8	31	1	55	1	1	-1	53
45080	1	0	1	0	1 :	1 1	L 0	1	0	0	1	1	1	1	55754	1	443
45081	1	0	1	0	1 1	1 1	L 0	1	0	0	1	1	1	1	52942	-1	443
465	1	1	0	0	0	1 0	0 0	1	1	1	0	104	1	-1	12420	1	161
45080	1	0	1	0	4	8 1	l 1	0	1	0	1	1	1	1	57153	1	53
45062	1	0	1	0	1 :	1 1	L 0	1	0	0	1	1	1	1	52812	-1	80
45081	1	0	1	0	1 :	1 1	L 0	1	0	0	1	1	1	1	1032	-1	443
45063	1	0	1	0	4	8 1	l 1	0	1	0	1	1	1	1	3296	1	53
45062	1	0	1	0	4	8 1	l 1	0	1	0	1	1	1	1	41047	1	53
45062	1	0	1	0	1 :	1 1	L 0	1	0	0	1	1	1	1	38136	-1	443
45063	1	0	1	0	1 :	1 1	L 0	1	0	0	1	1	1	1	61850	-1	33155
45080	0	1	0	1	0	0 -1	-1	-1	-1	-1	0	0	0	1	1	-1	443

3.0 Dataset Analysis and Applications 3.1 Dataset Distribution

An initial analysis of the dataset shows a balanced distribution of benign and malicious traffic, making it suitable for training IDS models. The diversity of attack types captured by the honeypot contributes to the dataset's robustness.

3.2 Splitting the Dataset

Before model training, the dataset should be subdivided into training, validation, and testing subsets. The training set will be used to train the model, the validation set will be used to fine-tune hyperparameters, and the testing set will be used to assess the final model's performance.

The study employed a percentage-based technique in Python with the scikit-learn module to divide the dataset into training, testing, and validation subsets for evaluating the performance of the IDS model. Here is how it works:

Let:

The total number of samples (rows) in the dataset is 559,735.

Split into training (70%) and remaining data (30%).

 n_train be the proportion of the dataset that was dedicated to train the model 70%

n_train = 559,735 * 70% = 391,814

Split remaining data (30%) into validation (50% of remaining) and test (50% of remaining).

Remaining data =Total number - training number

Remaining = 559,735 - 391,814

Remaining data =167,921

 n_test be the proportion of the dataset that was dedicated to test the model 50% of the remaining

n_test = 167,921 * 50%= 83,961

The remained data will be for validation

n_val is the 50% of remained dataset that was dedicated to validation.

n_val = 167,921 - 83,961 = 83,960

It should be noted that n_train + n_test + n_val should equal one, i.e., 100% of the dataset. After determining the number of samples for each subset, the dataset was split using the scikit-learn library's train_test_split function twice: The pandas' to_csv method was employed to save the datasets created using scikit-learn's train_test_split function to CSV files. At the end, we have six CSV files with the respective data subsets (X_train.csv, X_test.csv, X_val.csv, y_train.csv, y_test.csv, y_val.csv).

Table 6

Summary of the MD23 Dataset

Attack T	уре	MD23	MD23-	MD23-	MD23-		
			TRAIN-1	VAL	TEST		
Dos,	Probe,	559,735	391,814	83,960	83,961		
U2R, R2L							

4.0 Results

4.1 Model Selection and Training

A PC with an Intel(R) Core (TM) 7 150U CPU running at 1.80 GHz and 16 GB of RAM was used to carry out the research. The MD23 dataset's CSV files were used to test binary classification and multiclassification techniques.

This study examined several machine learning models, including Decision Tree (DT), Random Forest (RF), Support Vector Machine (SVM), XGBoost, and LightGBM. These models were chosen based on their proven effectiveness in prior IDS research and their ability to handle structured tabular data with complicated, non-linear patterns.

4.1.1 Justification for Model Choice

- Both XGBoost and LightGBM were utilised because, although they are gradient boosting frameworks, they have different strengths: XGBoost is well-known for its regularisation skills, which assist in reducing overfitting. It is resistant to noisy data and works well with medium-sized datasets.
- LightGBM, on the other hand, is intended for fast training and low memory utilisation, making it ideal for large-scale datasets. It employs a histogram-based method with leaf-wise tree growth, resulting in faster convergence and increased accuracy in many circumstances. Using both models enables a comparative investigation, exploiting their complementary capabilities to identify the best model for real-time IDS applications in resource-constrained contexts such as Tanzanian HLIs.

Using both models enables for a comparative investigation, exploiting their complementary capabilities to identify the best model for real-time IDS applications in resource-constrained contexts such as Tanzanian HLIs.

4.1.2 Hyperparameters Used

The following hyperparameters were set after tuning via grid search and cross-validation:

- XGBoost: n_estimators = 100, learning rate: 0.1, maximum depth: 6, subsample: 0.8, column sample by tree: 0.8, reg_alpha: 0.1, reg_lambda: 1.0.
- LightGBM: Number of estimators: 100, learning rate is 0.1, the number of leaves is 31, and the maximum depth is -1 (no restriction), features fraction: 0.8, bagging fraction: 0.8, bagging frequency: 5

These parameters were chosen to strike a compromise between model complexity, detection accuracy, and training speed, particularly considering the demand for scalable solutions in dynamic campus network contexts.

4.2 Model Performance Evaluation

We evaluated various machine learning techniques for Intrusion Detection Systems (IDS) using three datasets: MD23, UNSW_NB15, and KDD Cup99. To guarantee a fair comparison, the same number of data samples (559,735 instances) was randomly chosen from the UNSW-NB15 and KDD Cup 1999 datasets to match the size of the MD23 dataset during model evaluation.

The algorithms compared were Decision Tree, Gradient Boosting, XGBoost, and Random Forest. Accuracy, precision, recall, and F1-score were the performance metrics utilised to compare. Demonstration of the proposed model's results is shown in Table 5 accuracy (A), precision (P), recall (R), and F1-score (F1).

Table 7

Proposed Model's Results Using the MD23 Dataset

Model	A%	P%	R%	F1%
DT	0.92	0.92	0.92	0.92
RF	0.93	0.93	0.93	0.92
XGBOOST	0.99	0.99	0.99	0.98
GB	0.93	0.93	0.93	0.93

4.2.1 The Overall Performance of MD23

Table 7 compares the performance of multiple machine learning classifiers on the MD23 test dataset. XGBoost beat other models, earning the best accuracy (99.0%), precision (99.0%), and recall (99.0%), as well as a slightly lower but still respectable F1-score (98.0%). These findings illustrate its excellent capacity to detect both regular and malicious traffic, indicating its applicability for real-time intrusion detection in campus networks.

Figure 2

Overall IDS Performance Metrics with MD23

4.2.2 The Overall Performance of UNSW_NB15 Figure 5 shows the performance characteristics of various Intrusion Detection Systems (IDS) models tested on the UNSW_NB15 dataset. Accuracy, precision, recall, and F1-score are among the metrics used. These metrics provide a full evaluation of each model's ability to detect and categorise network intrusions.

Figure 3

Overall IDS Performance Metrics with UNSW NB15

4.2.3 The Overall Performance of KDD Cup99

The KDD Cup99 dataset was used to evaluate different Intrusion Detection Systems (IDS) models, and the results are displayed in Figure 6. Among the measurements employed are accuracy, precision, recall, and F1-score. These metrics offer a comprehensive assessment of each model's classifier and intrusion detection capabilities.

Figure 4

Overall IDS Performance Metrics with KDD Cup99

Although the research was primarily concerned with offline evaluation, the method was developed with real-time deployment in mind. The feature extraction and classification stages are computationally efficient, and the models were designed to have low inference delay. Future work will involve deploying the system in a live environment to assess latency and throughput under realistic traffic loads, ensuring responsiveness for time-sensitive applications.

5.0 Discussion

The MD23 dataset is used to check how well IDS performs, and it shows that combined methods, especially XGBoost and Random Forest, often perform better than simpler models like Decision Tree and Gradient Boosting in all important measures. According to Table 5, XGBoost obtained 99.0% accuracy, 99.0% precision, 99.0% recall, and a 98.0% F1-score on the MD23 test set. These statistics demonstrate the model's high capacity to detect malicious traffic with few false alarms, which is critical for practical network security deployment.

This remarkable performance confirms the dependability of ensemble approaches for difficult IDS problems. XGBoost and Random Forest, unlike simpler classifiers, can better capture non-linear relationships and interactions in data, which is critical for accurately modelling traffic behaviour in Tanzanian higher learning institutions (HLIs), which frequently have unique infrastructure and user behaviour when compared to commercial networks.

This study fills a huge research gap by focusing on domain-specific datasets from developing-country university environments. The MD23 dataset, which was acquired from the MUST campus network in Tanzania, provides contextually relevant insights into local network setups, protocols, and user activity. As a result, the findings are particularly relevant to Tanzanian HLIs and similarly structured academic institutions in the Global South.

Gradient boosting performed well, especially on the KDD Cup99 and MD23 datasets, but it was significantly less robust than XGBoost. Random Forest scored well but fell below the best models, presumably due to its reliance on random feature selection, which can neglect critical clues. Despite being understandable and simple to execute, the decision tree repeatedly produced the lowest scores, exposing its limits in dealing with complicated intrusion detection tasks.

The system design is scalable and resourceefficient. As the dataset volume rose, the model maintained good accuracy while incurring minimal computing cost. This is mostly owing to efficient feature selection and preprocessing techniques, which enable deployment in resource-constrained situations such as academic institutions with restricted IT budgets.

Despite these advantages, the study is not without limits. First, the MD23 dataset only covers DNS flows, which may not reflect the entire range of attack behaviours found in broader network traffic. Second, despite having 559,735 classified flows, the dataset was not made available owing to privacy and ethical concerns. Future iterations should include anonymisation techniques or seek ethical approval to allow open access for replication. Finally, the results are based solely on classification accuracy; using additional variables such as real-time detection delay may provide a more thorough performance assessment.

6.0 Conclusion

This study illustrates that creating a domainspecific dataset improves the performance of Intrusion Detection Systems (IDS) when compared to using only public datasets. Our empirical study of three datasets—MD23 (custom), UNSW_NB15, and KDD Cup99—showed that machine learning models, particularly XGBoost, produced superior accuracy, precision, recall, and F1-score on the MD23 dataset, with near-perfect performance (1.00 across all measures).

The enhanced results illustrate the necessity of customising datasets to the relevant network environment, since MD23 better represented Tanzanian college networks' unique traffic patterns and security features. Public datasets, on the other hand, lacked contextual significance, resulting in significantly inferior performance.

Aside from accuracy, the suggested approach has several practical advantages, including reduced false positive rates, scalability to varied network conditions, and efficient resource utilisation. These properties make it ideal for real-time deployment in higher learning institutions (HLIs), particularly in underdeveloped countries.

This paper presents a verified methodology for creating and using domain-specific datasets in IDS development, as well as the MD23 benchmark for evaluating machine learning models in academic network contexts.

7.0 Recommendations

Based on the results of this study, we make the following recommendations:

- i. Domain-Specific Data Collection
- Domain-specific datasets should be collected and curated by organisations as a top priority for IDS deployment. This ensures that the IDS is educated on data that accurately reflects the organisation's network's traffic and threat landscape.
- ii. Algorithm Selection

Choosing the proper algorithm is as critical as having domain-specific data. XGBoost outperformed expectations in this investigation and should be regarded as a top contender for IDS implementations.

iii. Continuous Data Updates

Updating domain-specific datasets regularly is crucial for adapting to shifting threats. Continuous data collection and periodic IDS retraining will help to maintain high detection accuracy.

iv. Hybrid Approaches

Exploring hybrid techniques that incorporate the strengths of various algorithms could help IDS perform even better. For example, combining XGBoost with other ensemble algorithms may result in even better outcomes.

v. Using Custom Datasets in Other Domains This study's methodology and findings can be applied to other fields where IDSs are crucial. Custom dataset collection should be a routine technique for improving IDS performance across multiple sectors.

The study concludes that a domain-specific dataset improves IDS performance significantly when compared to public datasets. Adopting the recommended procedures can assist organisations in developing more robust and effective IDS systems adapted to their specific network environments. The use of XGBoost and Random Forest models is recommended for IDS applications with MD23 due to their superior performance in all evaluated metrics. The decision tree, while still effective, may not be as robust or reliable as the ensemble methods for this specific use case.

8.0 Funding

This work was supported by Mbeya University of Science and Technology.

9.0 Acknowledgement

We would like to acknowledge the MUST management for providing the infrastructure necessary for data collection and for supporting this research.

10.0 Conflict of Interest

The authors declare no conflict of interest.

11.0 References

- Aljanabi, M., Ismail, M. A., & Ali, A. H. (2021a). Intrusion detection systems, issues, challenges, and needs. *International Journal of Computational Intelligence Systems, 14* (1), 560-571. https://doi.org/ 10.2991/IJCIS.D.210105.001
- Al-Qatf, M., Lasheng, Y., Al-Habib, M., & Al-Sabahi,
 K. (2018). Deep learning approach combining sparse autoencoder with SVM for network intrusion detection. *IEEE Access, 6*, 52843-52856. https://doi.org/1 0.1109/ACCESS.2018.2869577
- Desyani, T., Saifudin, A., & Yulianti, Y. (2020). Feature selection based on Naive Bayes for Caesarean section prediction. *IOP Conference Series: Materials Science and Engineering, 879*(1), 012091. https://doi.o rg/10.1088/1757-899X/879/1/012091
- Devi, P. P., & Kannan, S. (2021). Performance analysis of machine learning models for threats and attacks in network security traffic model. *International Journal of*

Engineering Research & Technology, 48 (12). (Note: Journal title and other publication info should be confirmed.)

- Ghurab, G. G., Alshami, F., Alshamy, R., & Othman, S. (2021). A detailed analysis of benchmark datasets for network intrusion detection system. *Asian Journal of Research in Computer Science, 7*(4), 39-53. https://doi .org/10.9734/AJRCOS/2021/v7i430185
- Khraisat, A., Gondal, I., Vamplew, P., & Kamruzzaman, J. (2019). Survey of intrusion detection systems: Techniques, datasets and challenges. *Cybersecurity*, 2(1), 1-22. https://doi.org/10.1186/s4240 0-019-0038-7
- Komisarek, M., Pawlicki, M., & Kozik, R. (2021). How to effectively collect and process network data for intrusion detection? *Entropy, 23* (11), 1532. https://www.mdpi. com/1099-4300/23/11/1532
- Lalduhsaka, R., Khan, A. K., & Roy, A. K. (2021). Issues and challenges in building a model for intrusion detection systems. In 2021 5th International Conference on Information Systems and Computer Networks (ISCON). https://doi.org/10.110 9/ISCON52037.2021.9702322
- Mishra, P., Varadharajan, V., Tupakula, U., & Pilli, E. S. (2019). A detailed investigation and analysis of using machine learning techniques for intrusion detection. *IEEE Communications Surveys & Tutorials,* 21(1), 686-728. https://doi.org/10.1109/C OMST.2018.2847722
- Ngueajio, M. K., Washington, G., Rawat, D. B., & Ngueabou, Y. (2023). Intrusion detection systems using support vector machines on the KDDCUP'99 and NSL-KDD datasets: A comprehensive survey. In *Proceedings of the International Conference on Advanced Intelligent Systems and Informatics* (Vol. 543 LNNS, pp. 609-629). https://doi.org/1 0.1007/978-3-031-16078-3_42
- Nkiama, H., Zainudeen, S., Said, M., & Saidu, M. (2016). A subset feature elimination mechanism for intrusion detection system. *International Journal of Advanced*

MUST Journal of Research and Development (MJRD) Volume 6 Issue 2, June 2025 e ISSN 2683-6467 & p ISSN 2683-6475

Computer Science and Applications, 7(4), 239-244. https://doi.org/10.14569/IJACS A.2016.070419

- Otchere, D. A., Ganat, T. O. A., Ojero, J. O., Tackie-Otoo, B. N., & Taki, M. Y. (2022). Application of gradient boosting regression model for the evaluation of feature selection techniques in improving reservoir characterisation predictions. *Journal of Petroleum Science and Engineering, 208*, 109244. https://doi.org/10.1016/j.petrol. 2021.109244
- Ring, M., Wunderlich, S., Scheuring, D., Landes, D., & Hotho, A. (2019). A survey of networkbased intrusion detection data sets.

Computers & Security, 86, 147–167. https://doi.org/10.1016/j.cose.2019.06.00 5

- Upadhyay, D., Manero, J., Zaman, M., & Sampalli, S. (2021). Gradient boosting feature selection with machine learning classifiers for intrusion detection on power grids. *IEEE Transactions on Network and Service Management, 18* (1), 1104-1116. https://d oi.org/10.1109/TNSM.2020.3032618
- Yu, Y., & Bian, N. (2020). An intrusion detection method using few-shot learning. *IEEE Access, 8*, 49730-49740. https://doi.org/1 0.1109/ACCESS.2020.2980136